Search results

1 – 2 of 2
Article
Publication date: 10 April 2017

Kankan Ji, Xingquan Zhang, Shubao Yang, Liping Shi, Shiyi Wang and Yuguo Wu

The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel…

Abstract

Purpose

The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel, respectively. Surface integrity, including surface roughness, sub-surface hardness, residual stresses and surface morphology, was investigated in detail, and the surface quality of samples ground by two grinding wheels was compared.

Design/methodology/approach

In the present work, surface integrity of quenched steel 1045 machined by the CBN grinding wheel and the SiC wheel was investigated systematically. All the specimens were machined with a single pass in the down-cutting mode of dry condition. Surface morphology of the ground specimen was observed by using OLYMPUS BX51M optical microscopy. Surface roughness of seven points was measured by using a surface roughness tester at a cut-off length of 1.8 mm and the measurement traces were perpendicular to the grinding direction. Sub-surface micro-hardness was measured by using HVS-1000 digital micro-hardness tester after the cross-section surface was polished. The residual stress was tested by using X-350A X-ray stress analyzer.

Findings

When the cut depth is increased from 0.01 to 0.07 mm, the steel surface machined by the CBN wheel remains clear grinding mark, lower roughness, higher micro-hardness and higher magnitude of compressive stress and fine microstructure, while the surface machined by the SiC grinding wheel becomes worse with increasing of cut depth. The value of micro-hardness decreases, and the surface roughness increases, and the surface compressive stress turns into tensile stress. Some micro-cracks and voids occur when the sample is processed by the SiC grinding wheel with cut depth 0.07 mm.

Originality/value

In this paper, the specimens of quenched steel 1045 were machined by the CBN grinding wheel and the SiC wheel with various cutting depths. The processing quality resulted from the CBN grinding wheel is better than that resulted from the SiC grinding wheel.

Details

International Journal of Structural Integrity, vol. 8 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 September 2019

Guotao Zhang, Baohong Tong, Shubao Yang, Liping Shi and Yanguo Yin

The purpose of this paper was to study the hydrodynamic lubrication of rough bilayer porous bearing to reveal the effect of percolation.

Abstract

Purpose

The purpose of this paper was to study the hydrodynamic lubrication of rough bilayer porous bearing to reveal the effect of percolation.

Design/methodology/approach

The seepage lubrication model of the circular bilayer porous bearing was established in polar coordinates. The digital filtering technique and Darcy’s law were used to simulate the rough surface and the percolation characteristic of the oil bearing, respectively. The influence of the structural parameters on the lubrication performance was analyzed.

Findings

Compared with the ordinary monolayer oil bearing with high porosity, the bilayer bearing can reduce the whole porosity, prevent oil infiltrating into the porous medium and have better lubrication performance. The lubrication performance of bilayer oil bearing is better than that of the single-layer oil bearing which has a higher porosity. With increasing root-mean-square roughness or decreasing surface porosity, the lubrication performance of the bilayer bearing improves. The lower the porosity of the surface layer, the better the lubrication performance.

Originality/value

This research provides a theoretical basis for clarifying the lubrication mechanism and influence the mechanism of the bilayer oil bearing.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2